DeepMind solves a 50-year old problem in Protein Folding Prediction. AlphaFold 2 improves over DeepMind's 2018 AlphaFold system with a new architecture and massively outperforms all competition. In this Video, we take a look at how AlphaFold 1 works and what we can gather about AlphaFold 2 from the little information that's out there.
OUTLINE:
0:00 - Intro & Overview
3:10 - Proteins & Protein Folding
14:20 - AlphaFold 1 Overview
18:20 - Optimizing a differentiable geometric model at inference
25:40 - Learning the Spatial Graph Distance Matrix
31:20 - Multiple Sequence Alignment of Evolutionarily Similar Sequences
39:40 - Distance Matrix Output Results
43:45 - Guessing AlphaFold 2 (it's Transformers)
53:30 - Conclusion & Comments
AlphaFold 2 Blog: https://deepmind.com/blog/article/alphafold...enge-in-biology
AlphaFold 1 Blog: https://deepmind.com/blog/article/AlphaFold...tific-discovery
AlphaFold 1 Paper: https://www.nature.com/articles/s41586-019-1923-7
Paper Title: High Accuracy Protein Structure Prediction Using Deep Learning
Abstract:
Proteins are essential to life, supporting practically all its functions. They are large complex molecules, made up of chains of amino acids, and what a protein does largely depends on its unique 3D structure. Figuring out what shapes proteins fold into is known as the “protein folding problem”, and has stood as a grand challenge in biology for the past 50 years. In a major scientific advance, the latest version of our AI system AlphaFold has been recognised as a solution to this grand challenge by the organisers of the biennial Critical Assessment of protein Structure Prediction (CASP). This breakthrough demonstrates the impact AI can have on scientific discovery and its potential to dramatically accelerate progress in some of the most fundamental fields that explain and shape our world.
Dec 3 2020, 09:13 AM, updated 5y ago
Quote
0.0145sec
0.30
5 queries
GZIP Disabled