Welcome Guest ( Log In | Register )

Bump Topic Topic Closed RSS Feed
147 Pages « < 127 128 129 130 131 > » Bottom

Outline · [ Standard ] · Linear+

 Honda Jazz 1.5 CKD, Official thread!

views
     
SUSnm7
post Aug 12 2016, 09:28 AM

Getting Started
**
Junior Member
192 posts

Joined: Jun 2014
QUOTE(mym123 @ Aug 11 2016, 08:52 PM)
What about this? Hahaha.... biggrin.gif  biggrin.gif
*
Uhhh... no more VTEC spirit.

Give me an NA2 anytime.

On the humorous side of things

http://www.roadandtrack.com/new-cars/news/...sx-ferrari-458/
http://www.roadandtrack.com/new-cars/news/...-gt3-acura-nsx/

This post has been edited by nm7: Aug 12 2016, 09:37 AM
SUSnm7
post Aug 12 2016, 09:31 AM

Getting Started
**
Junior Member
192 posts

Joined: Jun 2014
QUOTE(rageLE @ Aug 12 2016, 01:46 AM)
thanks for the replies , so 95 already enough for jazz for city driving i guess
maybe
hell yes wub.gif
*
It is not a matter of enough or not. You just need to try it out and see if it balances out.

I'd suggest you run a couple tank full of 97, at least 3 full pumps and average out your mileage and compare it against 95. If the costs savings is there, long term wise, you do get some savings. But, just don't expect to save like really a lot. It might just be something you don't really even see much of depending on your usage.
Rambo_is_real
post Aug 12 2016, 03:04 PM

New Member
*
Junior Member
11 posts

Joined: Jan 2015
anyone upgraded to aftermarket car audio system? biggrin.gif

mind to share?
SUSnm7
post Aug 12 2016, 09:20 PM

Getting Started
**
Junior Member
192 posts

Joined: Jun 2014
QUOTE(Rambo_is_real @ Aug 12 2016, 03:04 PM)
anyone upgraded to aftermarket car audio system? biggrin.gif

mind to share?
*
What you expect to be shared?
samsung7plus
post Aug 14 2016, 07:29 AM

New Member
*
Newbie
2 posts

Joined: Mar 2012
Anyone installed locktech on your jazz
Is it suitable or have any others to recommend from all Jazz sifu.
Attached Image

This post has been edited by samsung7plus: Aug 14 2016, 07:32 AM
haroldz123
post Aug 14 2016, 09:19 PM

Regular
******
Senior Member
1,062 posts

Joined: May 2008
QUOTE(samsung7plus @ Aug 14 2016, 07:29 AM)
Anyone installed locktech on your jazz
Is it suitable or have any others to recommend from all Jazz sifu.
Attached Image
*
If u search in this case thread, u can find the discussion early on in the thread
Xefron
post Aug 16 2016, 08:50 AM

Look at all my stars!!
*******
Senior Member
2,507 posts

Joined: Jan 2003


QUOTE(mym123 @ Aug 11 2016, 03:14 PM)
Most friends said there are benefits of using ron97 against ron95 such as better milage etc.....however i read once in <link removed> and they do the testing on it....the result.... No beneficial at all with regards with better mileage etc.....higher ron only applicable if u are running on turbo engine....NA engine no need for ron97 or ron100..... biggrin.gif  biggrin.gif
*
I have done my own test, rotate RON 95-97-100 for 6 months,same driving conditions... in term of fuel consumption it is the much the same.


the only different maybe just the throttle response. hmm.gif
monkeybar
post Aug 16 2016, 08:59 AM

On my way
****
Senior Member
576 posts

Joined: Jan 2012
From: Jenjarom


95 for daily driving is enough, lastime i was using 97 and V-Power Racing it really feel the differents power between these petrol...
just the price is totally expensive after
compared calculation with 95...
95 more cheap and more litters...
so hell yes 95... cause money saving alot
Xefron
post Aug 16 2016, 09:09 AM

Look at all my stars!!
*******
Senior Member
2,507 posts

Joined: Jan 2003


QUOTE(monkeybar @ Aug 16 2016, 08:59 AM)
95 for daily driving is enough, lastime i was using 97 and V-Power Racing it really feel the differents power between these petrol...
just the price is totally expensive after
compared calculation with 95...
95 more cheap and more litters...
so hell yes 95... cause money saving alot
*
only for long journey with expected no traffic jam i pump v-powahhh racing.if balek raya only RON 95.LEL.
Xefron
post Aug 18 2016, 01:15 PM

Look at all my stars!!
*******
Senior Member
2,507 posts

Joined: Jan 2003


QUOTE(mym123 @ Aug 11 2016, 03:09 PM)
Would you traded your jazz to this ???
*
but i prefer this one drool.gif
[attachmentid=7346902]
SUSnm7
post Aug 18 2016, 11:36 PM

Getting Started
**
Junior Member
192 posts

Joined: Jun 2014
QUOTE(Xefron @ Aug 18 2016, 01:15 PM)
but i prefer this one  drool.gif
[attachmentid=7346902]
*
Station wagon?
Xefron
post Aug 19 2016, 07:54 AM

Look at all my stars!!
*******
Senior Member
2,507 posts

Joined: Jan 2003


QUOTE(nm7 @ Aug 18 2016, 11:36 PM)
Station wagon?
*
hell yeah although not many Malaysian like it.
SUSnm7
post Aug 19 2016, 09:05 AM

Getting Started
**
Junior Member
192 posts

Joined: Jun 2014
QUOTE(Xefron @ Aug 19 2016, 07:54 AM)
hell yeah although not many Malaysian like it.
*
Not bad la. But i prefer something like rs6 though. More grunt.
farghmee
post Aug 19 2016, 09:05 AM

Getting Started
**
Junior Member
91 posts

Joined: May 2007


QUOTE(mym123 @ Aug 11 2016, 03:14 PM)
Most friends said there are benefits of using ron97 against ron95 such as better milage etc.....however i read once in <link removed> and they do the testing on it....the result.... No beneficial at all with regards with better mileage etc.....higher ron only applicable if u are running on turbo engine....NA engine no need for ron97 or ron100..... biggrin.gif  biggrin.gif
*
Hi-compression engine needs higher RON fuel.
Turbo engine runs lower RON fuel than Hi-comp engine.

mym123
post Aug 19 2016, 10:46 AM

Getting Started
**
Junior Member
89 posts

Joined: Jul 2010


QUOTE(farghmee @ Aug 19 2016, 10:05 AM)
Hi-compression engine needs higher RON fuel.
Turbo engine runs lower RON fuel than Hi-comp engine.
*
Higher octane fuels are often required or recommended for engines that use a higher compression ratio and/or use supercharging or turbocharging to force more air into the engine. Increasing pressure in the cylinder allows an engine to extract more mechanical energy from a given air/fuel mixture but requires higher octane fuel to keep the mixture from pre-detonating. In these engines, high octane fuel will improve performance and fuel economy.

However Its best to follow octane rating required for your vehicle by the manufacturer manual....
Xefron
post Aug 19 2016, 10:48 AM

Look at all my stars!!
*******
Senior Member
2,507 posts

Joined: Jan 2003


QUOTE(nm7 @ Aug 19 2016, 09:05 AM)
Not bad la. But i prefer something like rs6 though. More grunt.
*
that's already different level. bye.gif

SUSnm7
post Aug 19 2016, 11:05 AM

Getting Started
**
Junior Member
192 posts

Joined: Jun 2014
QUOTE(Xefron @ Aug 19 2016, 10:48 AM)
that's already different level. bye.gif
*
For a scooby. I prefer WRX la.
farghmee
post Aug 20 2016, 06:53 AM

Getting Started
**
Junior Member
91 posts

Joined: May 2007


QUOTE(mym123 @ Aug 19 2016, 10:46 AM)
Higher octane fuels are often required or recommended for engines that use a higher compression ratio and/or use supercharging or turbocharging to force more air into the engine. Increasing pressure in the cylinder allows an engine to extract more mechanical energy from a given air/fuel mixture but requires higher octane fuel to keep the mixture from pre-detonating. In these engines, high octane fuel will improve performance and fuel economy.

However Its best to follow octane rating required for your vehicle by the manufacturer manual....
*
Pls check the compression ratio of lancer evo and compare with mazda skyactive.

https://turbobygarrett.com/turbobygarrett/c...atio_with_boost

This post has been edited by farghmee: Aug 20 2016, 07:07 AM
mym123
post Aug 20 2016, 07:50 AM

Getting Started
**
Junior Member
89 posts

Joined: Jul 2010



This is what Uncle Wiki said....there is much more than compression ratio of an engine to determine the actual octane rating needed in the engine....however there is much easier way to determine it correctly rather than reading the long article below....its known as 'Manual Book' by the car manufacturer.....except you are in serious modification...


The static compression ratio of an internal-combustion engine or external combustion engine is a value that represents the ratio of the volume of its combustion chamber from its largest capacity to its smallest capacity. It is a fundamental specification for many common combustion engines.

In a piston engine, it is the ratio between the volume of the cylinder and combustion chamber when the piston is at the bottom of its stroke, and the volume of the combustion chamber when the piston is at the top of its stroke.[1]

For example, a cylinder and its combustion chamber with the piston at the bottom of its stroke may contain 1000 cc of air (900 cc in the cylinder plus 100 cc in the combustion chamber). When the piston has moved up to the top of its stroke inside the cylinder, and the remaining volume inside the head or combustion chamber has been reduced to 100 cc, then the compression ratio would be proportionally described as 1000:100, or with fractional reduction, a 10:1 compression ratio.

A high compression ratio is desirable because it allows an engine to extract more mechanical energy from a given mass of air-fuel mixture due to its higher thermal efficiency. This occurs because internal combustion engines are heat engines, and higher efficiency is created because higher compression ratios permit the same combustion temperature to be reached with less fuel, while giving a longer expansion cycle, creating more mechanical power output and lowering the exhaust temperature. It may be more helpful to think of it as an "expansion ratio", since more expansion reduces the temperature of the exhaust gases, and therefore the energy wasted to the atmosphere. Diesel engines actually have a higher peak combustion temperature than petrol engines, but the greater expansion means they reject less heat in their cooler exhaust.

Higher compression ratios will however make gasoline engines subject to engine knocking if lower octane-rated fuel is used, also known as detonation. This can reduce efficiency or damage the engine if knock sensors are not present to modify the ignition timing. However, knock sensors have been a requirement of the OBD-II specification used in 1996 model year vehicles and newer.

On the other hand, Diesel engines operate on the principle of compression ignition, so that a fuel which resists autoignition will cause late ignition, which will also lead to engine knock.

Contents

1 Formula
2 Typical compression ratios
2.1 Gasoline (petrol) engine
2.2 Petrol/gasoline engine with pressure-charging
2.3 Petrol/gasoline engine for racing
2.4 Ethanol and methanol engines
2.5 Gas-fueled engine
2.6 Diesel engine
2.7 Kerosene engine
3 Fault finding and diagnosis
4 Variable Compression Ratio (VCR) engines
5 Dynamic compression ratio
6 Compression ratio versus overall pressure ratio
7 See also
8 Notes
9 External links

Formula

The static compression ratio is calculated by the following formula:

CR = π 4 b 2 s + V c V c {\displaystyle {\mbox{CR}}={\frac {{\tfrac {\pi }{4}}b^{2}s+V_{c}}{V_{c}}}} {\mbox{CR}}={\frac {{\tfrac {\pi }{4}}b^{2}s+V_{c}}{V_{c}}}, where
b {\displaystyle b\;} b\; = cylinder bore (diameter)
s {\displaystyle s\;} s\; = piston stroke length
V c {\displaystyle V_{c}\;} V_{c}\; = clearance volume. It is the volume of the combustion chamber (including head gasket). This is the minimum volume of the space at the end of the compression stroke, i.e. when the piston reaches top dead center (TDC). Because of the complex shape of this space, it is usually measured directly rather than calculated.

Typical compression ratios
Gasoline (petrol) engine

The compression ratio in a gasoline (petrol)-powered engine will usually not be much higher than 10:1 due to potential engine knocking (detonation) and not lower than 6:1. Some production automotive engines built for high performance from 1955–1972, used high-octane leaded gasoline or '5 star' to allow compression ratios as high as 13.0:1.

A technique used to prevent the onset of knock is the high "swirl" engine that forces the intake charge to adopt a fast circular rotation in the cylinder during compression that provides quicker and more complete combustion. It is possible to manufacture gasoline engines with compression ratios of over 11:1 that can use 87 (MON + RON)/2 (octane rating) fuel with the addition of variable valve timing and knock sensors to delay ignition timing. Such engines may not produce their full rated power using 87 octane gasoline under all circumstances, due to the delayed ignition timing. Direct fuel injection, which can inject fuel only at the time of fuel ignition (similar to a diesel engine), is another recent development which also allows for higher compression ratios on gasoline engines.

The CR can be as high as 13.5:1 (2013 Ferrari LaFerrari) in engines with a 'ping' or 'knock' sensor and an electronic control unit. In 1981, Jaguar released a cylinder head that allowed up to 14:1 compression; but settled for 12.5:1 in production cars. The cylinder head design was known as the "May Fireball" head; it was developed by a Swiss engineer Michael May.

In 2012, Mazda released new petrol engines under the brand name SkyActiv with a 14:1 compression ratio (U.S. models have a 13:1 compression ratio to allow for 87 AKI octane), to be used in all Mazda vehicles by 2015.[2][3][4]
Petrol/gasoline engine with pressure-charging

In a turbocharged or supercharged gasoline engine, the CR is customarily built at 10.5:1 or lower. This is due to the turbocharger/supercharger already having compressed the air before it enters the cylinders. Port fuel injected engines typically run lower boost than direct fuel injected engines because port fuel injection allows the air/fuel mixture to be heated together which leads to detonation. Conversely, directly injected engines can run higher boost because heated air will not detonate without a fuel being present. In this instance fuel is injected as late as 60 degrees before top dead center to avoid heating the mixture to the point of compression ignition.
Petrol/gasoline engine for racing

Motorcycle racing engines can use compression ratios as high as 14.7:1, and it is common to find motorcycles with compression ratios above 12.0:1 designed for 86 or 87 octane fuel. F1 engines come closer to 17:1, which is critical for maximizing volumetric/fuel efficiency at around 18,000 RPM.[citation needed]
Ethanol and methanol engines

Ethanol and methanol can take significantly higher compression ratios than gasoline. Racing engines burning methanol and ethanol fuel often incorporate a CR of 14.5-16:1.
Gas-fueled engine

The CR may be higher in engines running exclusively on LPG or CNG, due to the higher octane rating of these fuels.
Diesel engine

There is no electrical sparking plug in an auto-ignition diesel engine; the heat of compression raises the temperature of the air in the cylinder sufficiently to ignite the diesel when this is injected into the cylinder; after the compression stroke. The CR will customarily exceed 14:1 and ratios over 22:1 are common. The appropriate compression ratio depends on the design of the cylinder head. The figure is usually between 14:1 and 23:1 for direct injection engines, and between 18:1 and 23:1 for indirect injection
Kerosene engine

A compression ratio of 6.5 or lower is desired for operation on kerosene. The petrol-paraffin engine version of the Ferguson TE20 tractor had a compression ratio of 4.5:1 for operation on tractor vaporising oil with an octane rating between 55 and 70.[5]
Fault finding and diagnosis

Measuring the compression pressure of an engine, with a pressure gauge connected to the spark plug opening, gives an indication of the engine's state and quality. There is, however, no formula to calculate compression ratio based on cylinder pressure.

If the nominal compression ratio of an engine is given, the pre-ignition cylinder pressure can be estimated using the following relationship:

p = p 0 × CR γ {\displaystyle p=p_{0}\times {\text{CR}}^{\gamma }} p=p_{0}\times {\text{CR}}^{\gamma }

where p 0 {\displaystyle p_{0}\;} p_{0}\; is the cylinder pressure at bottom dead center which is usually at 1 atm, CR {\displaystyle {\text{CR}}} {\text{CR}} is the compression ratio, and γ {\displaystyle \gamma \;} \gamma \; is the specific heat ratio for the working fluid, which is about 1.4 for air, and 1.3 for methane-air mixture.

For example, if an engine running on gasoline has a compression ratio of 10:1, the cylinder pressure at top dead center is

p TDC = 1 bar × 10 1.4 = 25.1 bar {\displaystyle p_{\text{TDC}}=1{\text{ bar}}\times 10^{1.4}=25.1{\text{ bar}}} p_{\text{TDC}}=1{\text{ bar}}\times 10^{1.4}=25.1{\text{ bar}}

This figure, however, will also depend on cam (i.e. valve) timing. Generally, cylinder pressure for common automotive designs should at least equal 10 bar, or, roughly estimated in pounds per square inch (psi) as between 15 and 20 times the compression ratio, or in this case between 150 psi and 200 psi, depending on cam timing. Purpose-built racing engines, stationary engines etc. will return figures outside this range.

Factors including late intake valve closure (relatively speaking for camshaft profiles outside of typical production-car range, but not necessarily into the realm of competition engines) can produce a misleadingly low figure from this test. Excessive connecting rod clearance, combined with extremely high oil pump output (rare but not impossible) can sling enough oil to coat the cylinder walls with sufficient oil to facilitate reasonable piston ring sealing. In engines with compromised ring seals, this can artificially give a misleadingly high compression figure.

This phenomenon can actually be used to some slight advantage. If a compression test does give a low figure, and it has been determined it is not due to intake valve closure/camshaft characteristics, then one can differentiate between the cause being valve/seat seal issues and ring seal by squirting engine oil into the spark plug orifice, in a quantity sufficient to disperse across the piston crown and the circumference of the top ring land, and thereby affect the mentioned seal. If a second compression test is performed shortly thereafter, and the new reading is much higher, it would be the ring seal that is problematic, whereas if the compression test pressure observed remains low, it is a valve sealing (or more rarely head gasket, or breakthrough piston or, rarer still, cylinder-wall damage) issue.

If there is a significant (greater than 10%) difference between cylinders, that may be an indication that valves or cylinder head gaskets are leaking, piston rings are worn, or that the block is cracked.

If a problem is suspected, then a more comprehensive test using a leak-down tester can locate the leak.
Variable Compression Ratio (VCR) engines

Because cylinder-bore diameter, piston-stroke length and combustion-chamber volume are almost always constant, the compression ratio for a given engine is almost always constant, until engine wear takes its toll.

One exception is the experimental Saab Variable Compression engine (SVC). This engine, designed by Saab Automobile, uses a technique that dynamically alters the volume of the combustion chamber (Vc), which, via the above equation, changes the compression ratio (CR).

The Atkinson cycle engine was one of the first attempts at variable compression. Since the compression ratio is the ratio between dynamic and static volumes of the combustion chamber, the Atkinson cycle's method of increasing the length of the power stroke compared to the intake stroke ultimately altered the compression ratio at different stages of the cycle.

On August 15, 2016 Nissan Motor Company announced a new variable compression engine that can choose an optimal compression ratio variably between 8:1 and 14:1. That lets the engine adjust moment by moment to torque demands, always maintaining top efficiency. Nissan says that the turbo-charged, 2-liter, four-cylinder VC-T engine averages 27 percent better fuel economy than the 3.5-liter V6 engine it replaces, with comparable power and torque.
Dynamic compression ratio

The calculated compression ratio, as given above, presumes that the cylinder is sealed at the bottom of the stroke, and that the volume compressed is the actual volume.

However: intake valve closure (sealing the cylinder) always takes place after BDC, which may cause some of the intake charge to be compressed backwards out of the cylinder by the rising piston at very low speeds; only the percentage of the stroke after intake valve closure is compressed. Intake port tuning and scavenging may allow a greater mass of charge (at a higher than atmospheric pressure) to be trapped in the cylinder than the static volume would suggest ( This "corrected" compression ratio is commonly called the "dynamic compression ratio".

This ratio is higher with more conservative (i.e., earlier, soon after BDC) intake cam timing, and lower with more radical (i.e., later, long after BDC) intake cam timing, but always lower than the static or "nominal" compression ratio.

The actual position of the piston can be determined by trigonometry, using the stroke length and the connecting rod length (measured between centers). The absolute cylinder pressure is the result of an exponent of the dynamic compression ratio. This exponent is a polytropic value for the ratio of variable heats for air and similar gases at the temperatures present. This compensates for the temperature rise caused by compression, as well as heat lost to the cylinder. Under ideal (adiabatic) conditions, the exponent would be 1.4, but a lower value, generally between 1.2 and 1.3 is used, since the amount of heat lost will vary among engines based on design, size and materials used, but provides useful results for purposes of comparison. For example, if the static compression ratio is 10:1, and the dynamic compression ratio is 7.5:1, a useful value for cylinder pressure would be (7.5)^1.3 × atmospheric pressure, or 13.7 bar. (× 14.7 psi at sea level = 201.8 psi. The pressure shown on a gauge would be the absolute pressure less atmospheric pressure, or 187.1 psi.)

The two corrections for dynamic compression ratio affect cylinder pressure in opposite directions, but not in equal strength. An engine with high static compression ratio and late intake valve closure will have a DCR similar to an engine with lower compression but earlier intake valve closure.

Additionally, the cylinder pressure developed when an engine is running will be higher than that shown in a compression test for several reasons.

The much higher velocity of a piston when an engine is running versus cranking allows less time for pressure to bleed past the piston rings into the crankcase.
a running engine is coating the cylinder walls with much more oil than an engine that is being cranked at low RPM, which helps the seal.
the higher temperature of the cylinder will create higher pressures when running vs. a static test, even a test performed with the engine near operating temperature.
A running engine does not stop taking air & fuel into the cylinder when the piston reaches BDC; The mixture that is rushing into the cylinder during the downstroke develops momentum and continues briefly after the vacuum ceases (in the same respect that rapidly opening a door will create a draft that continues after movement of the door ceases). This is called scavenging. Intake tuning, cylinder head design, valve timing and exhaust tuning determine how effectively an engine scavenges.

Compression ratio versus overall pressure ratio

Compression ratio and overall pressure ratio are interrelated as follows:
Compression ratio 2:1 3:1 5:1 10:1 15:1 20:1 25:1 35:1
Pressure ratio 2.64:1 4.66:1 9.52:1 25.12:1 44.31:1 66.29:1 90.60:1 145.11:1

The reason for this difference is that compression ratio is defined via the volume reduction:

CR = V 1 V 2 {\displaystyle {\text{CR}}={\frac {V_{1}}{V_{2}}}} {\text{CR}}={\frac {V_{1}}{V_{2}}},

while pressure ratio is defined as the pressure increase:

PR = P 2 P 1 {\displaystyle {\text{PR}}={\frac {P_{2}}{P_{1}}}} {\text{PR}}={\frac {P_{2}}{P_{1}}}.

In calculating the pressure ratio, we assume that an adiabatic compression is carried out (i.e. that no heat energy is supplied to the gas being compressed, and that any temperature rise is solely due to the compression). We also assume that air is a perfect gas. With these two assumptions, we can define the relationship between change of volume and change of pressure as follows:

P 1 V 1 γ = P 2 V 2 γ ⇒ P 2 P 1 = ( V 1 V 2 ) γ {\displaystyle P_{1}V_{1}^{\gamma }=P_{2}V_{2}^{\gamma }\Rightarrow {\frac {P_{2}}{P_{1}}}=\left({\frac {V_{1}}{V_{2}}}\right)^{\gamma }} P_{1}V_{1}^{\gamma }=P_{2}V_{2}^{\gamma }\Rightarrow {\frac {P_{2}}{P_{1}}}=\left({\frac {V_{1}}{V_{2}}}\right)^{\gamma }

where γ {\displaystyle \gamma } \gamma is the ratio of specific heats (air: approximately 1.4). The values in the table above are derived using this formula. Note that in reality the ratio of specific heats changes with temperature and that significant deviations from adiabatic behavior will occur


farghmee
post Aug 20 2016, 08:11 AM

Getting Started
**
Junior Member
91 posts

Joined: May 2007


QUOTE(mym123 @ Aug 20 2016, 07:50 AM)
This is what Uncle Wiki said....there is much more than compression ratio of an engine to determine the actual octane rating needed in the engine....however there is much easier way to determine it correctly rather than reading the long article below....its known as 'Manual Book' by the car manufacturer.....except you are in serious modification... 
The static compression ratio of an internal-combustion engine or external combustion engine is a value that represents the ratio of the volume of its combustion chamber from its largest capacity to its smallest capacity. It is a fundamental specification for many common combustion engines.

In a piston engine, it is the ratio between the volume of the cylinder and combustion chamber when the piston is at the bottom of its stroke, and the volume of the combustion chamber when the piston is at the top of its stroke.[1]

For example, a cylinder and its combustion chamber with the piston at the bottom of its stroke may contain 1000 cc of air (900 cc in the cylinder plus 100 cc in the combustion chamber). When the piston has moved up to the top of its stroke inside the cylinder, and the remaining volume inside the head or combustion chamber has been reduced to 100 cc, then the compression ratio would be proportionally described as 1000:100, or with fractional reduction, a 10:1 compression ratio.

A high compression ratio is desirable because it allows an engine to extract more mechanical energy from a given mass of air-fuel mixture due to its higher thermal efficiency. This occurs because internal combustion engines are heat engines, and higher efficiency is created because higher compression ratios permit the same combustion temperature to be reached with less fuel, while giving a longer expansion cycle, creating more mechanical power output and lowering the exhaust temperature. It may be more helpful to think of it as an "expansion ratio", since more expansion reduces the temperature of the exhaust gases, and therefore the energy wasted to the atmosphere. Diesel engines actually have a higher peak combustion temperature than petrol engines, but the greater expansion means they reject less heat in their cooler exhaust.

Higher compression ratios will however make gasoline engines subject to engine knocking if lower octane-rated fuel is used, also known as detonation. This can reduce efficiency or damage the engine if knock sensors are not present to modify the ignition timing. However, knock sensors have been a requirement of the OBD-II specification used in 1996 model year vehicles and newer.

On the other hand, Diesel engines operate on the principle of compression ignition, so that a fuel which resists autoignition will cause late ignition, which will also lead to engine knock.

Contents

    1 Formula
    2 Typical compression ratios
        2.1 Gasoline (petrol) engine
        2.2 Petrol/gasoline engine with pressure-charging
        2.3 Petrol/gasoline engine for racing
        2.4 Ethanol and methanol engines
        2.5 Gas-fueled engine
        2.6 Diesel engine
        2.7 Kerosene engine
    3 Fault finding and diagnosis
    4 Variable Compression Ratio (VCR) engines
    5 Dynamic compression ratio
    6 Compression ratio versus overall pressure ratio
    7 See also
    8 Notes
    9 External links

Formula

The static compression ratio is calculated by the following formula:

    CR = π 4 b 2 s + V c V c {\displaystyle {\mbox{CR}}={\frac {{\tfrac {\pi }{4}}b^{2}s+V_{c}}{V_{c}}}} {\mbox{CR}}={\frac {{\tfrac {\pi }{4}}b^{2}s+V_{c}}{V_{c}}}, where
    b {\displaystyle b\;} b\; = cylinder bore (diameter)
    s {\displaystyle s\;} s\; = piston stroke length
    V c {\displaystyle V_{c}\;} V_{c}\; = clearance volume. It is the volume of the combustion chamber (including head gasket). This is the minimum volume of the space at the end of the compression stroke, i.e. when the piston reaches top dead center (TDC). Because of the complex shape of this space, it is usually measured directly rather than calculated.

Typical compression ratios
Gasoline (petrol) engine

The compression ratio in a gasoline (petrol)-powered engine will usually not be much higher than 10:1 due to potential engine knocking (detonation) and not lower than 6:1. Some production automotive engines built for high performance from 1955–1972, used high-octane leaded gasoline or '5 star' to allow compression ratios as high as 13.0:1.

A technique used to prevent the onset of knock is the high "swirl" engine that forces the intake charge to adopt a fast circular rotation in the cylinder during compression that provides quicker and more complete combustion. It is possible to manufacture gasoline engines with compression ratios of over 11:1 that can use 87 (MON + RON)/2 (octane rating) fuel with the addition of variable valve timing and knock sensors to delay ignition timing. Such engines may not produce their full rated power using 87 octane gasoline under all circumstances, due to the delayed ignition timing. Direct fuel injection, which can inject fuel only at the time of fuel ignition (similar to a diesel engine), is another recent development which also allows for higher compression ratios on gasoline engines.

The CR can be as high as 13.5:1 (2013 Ferrari LaFerrari) in engines with a 'ping' or 'knock' sensor and an electronic control unit. In 1981, Jaguar released a cylinder head that allowed up to 14:1 compression; but settled for 12.5:1 in production cars. The cylinder head design was known as the "May Fireball" head; it was developed by a Swiss engineer Michael May.

In 2012, Mazda released new petrol engines under the brand name SkyActiv with a 14:1 compression ratio (U.S. models have a 13:1 compression ratio to allow for 87 AKI octane), to be used in all Mazda vehicles by 2015.[2][3][4]
Petrol/gasoline engine with pressure-charging

In a turbocharged or supercharged gasoline engine, the CR is customarily built at 10.5:1 or lower. This is due to the turbocharger/supercharger already having compressed the air before it enters the cylinders. Port fuel injected engines typically run lower boost than direct fuel injected engines because port fuel injection allows the air/fuel mixture to be heated together which leads to detonation. Conversely, directly injected engines can run higher boost because heated air will not detonate without a fuel being present. In this instance fuel is injected as late as 60 degrees before top dead center to avoid heating the mixture to the point of compression ignition.
Petrol/gasoline engine for racing

Motorcycle racing engines can use compression ratios as high as 14.7:1, and it is common to find motorcycles with compression ratios above 12.0:1 designed for 86 or 87 octane fuel. F1 engines come closer to 17:1, which is critical for maximizing volumetric/fuel efficiency at around 18,000 RPM.[citation needed]
Ethanol and methanol engines

Ethanol and methanol can take significantly higher compression ratios than gasoline. Racing engines burning methanol and ethanol fuel often incorporate a CR of 14.5-16:1.
Gas-fueled engine

The CR may be higher in engines running exclusively on LPG or CNG, due to the higher octane rating of these fuels.
Diesel engine

There is no electrical sparking plug in an auto-ignition diesel engine; the heat of compression raises the temperature of the air in the cylinder sufficiently to ignite the diesel when this is injected into the cylinder; after the compression stroke. The CR will customarily exceed 14:1 and ratios over 22:1 are common. The appropriate compression ratio depends on the design of the cylinder head. The figure is usually between 14:1 and 23:1 for direct injection engines, and between 18:1 and 23:1 for indirect injection
Kerosene engine

A compression ratio of 6.5 or lower is desired for operation on kerosene. The petrol-paraffin engine version of the Ferguson TE20 tractor had a compression ratio of 4.5:1 for operation on tractor vaporising oil with an octane rating between 55 and 70.[5]
Fault finding and diagnosis

Measuring the compression pressure of an engine, with a pressure gauge connected to the spark plug opening, gives an indication of the engine's state and quality. There is, however, no formula to calculate compression ratio based on cylinder pressure.

If the nominal compression ratio of an engine is given, the pre-ignition cylinder pressure can be estimated using the following relationship:

    p = p 0 × CR γ {\displaystyle p=p_{0}\times {\text{CR}}^{\gamma }} p=p_{0}\times {\text{CR}}^{\gamma }

where p 0 {\displaystyle p_{0}\;} p_{0}\; is the cylinder pressure at bottom dead center which is usually at 1 atm, CR {\displaystyle {\text{CR}}} {\text{CR}} is the compression ratio, and γ {\displaystyle \gamma \;} \gamma \; is the specific heat ratio for the working fluid, which is about 1.4 for air, and 1.3 for methane-air mixture.

For example, if an engine running on gasoline has a compression ratio of 10:1, the cylinder pressure at top dead center is

    p TDC = 1  bar × 10 1.4 = 25.1  bar {\displaystyle p_{\text{TDC}}=1{\text{ bar}}\times 10^{1.4}=25.1{\text{ bar}}} p_{\text{TDC}}=1{\text{ bar}}\times 10^{1.4}=25.1{\text{ bar}}

This figure, however, will also depend on cam (i.e. valve) timing. Generally, cylinder pressure for common automotive designs should at least equal 10 bar, or, roughly estimated in pounds per square inch (psi) as between 15 and 20 times the compression ratio, or in this case between 150 psi and 200 psi, depending on cam timing. Purpose-built racing engines, stationary engines etc. will return figures outside this range.

Factors including late intake valve closure (relatively speaking for camshaft profiles outside of typical production-car range, but not necessarily into the realm of competition engines) can produce a misleadingly low figure from this test. Excessive connecting rod clearance, combined with extremely high oil pump output (rare but not impossible) can sling enough oil to coat the cylinder walls with sufficient oil to facilitate reasonable piston ring sealing. In engines with compromised ring seals, this can artificially give a misleadingly high compression figure.

This phenomenon can actually be used to some slight advantage. If a compression test does give a low figure, and it has been determined it is not due to intake valve closure/camshaft characteristics, then one can differentiate between the cause being valve/seat seal issues and ring seal by squirting engine oil into the spark plug orifice, in a quantity sufficient to disperse across the piston crown and the circumference of the top ring land, and thereby affect the mentioned seal. If a second compression test is performed shortly thereafter, and the new reading is much higher, it would be the ring seal that is problematic, whereas if the compression test pressure observed remains low, it is a valve sealing (or more rarely head gasket, or breakthrough piston or, rarer still, cylinder-wall damage) issue.

If there is a significant (greater than 10%) difference between cylinders, that may be an indication that valves or cylinder head gaskets are leaking, piston rings are worn, or that the block is cracked.

If a problem is suspected, then a more comprehensive test using a leak-down tester can locate the leak.
Variable Compression Ratio (VCR) engines

Because cylinder-bore diameter, piston-stroke length and combustion-chamber volume are almost always constant, the compression ratio for a given engine is almost always constant, until engine wear takes its toll.

One exception is the experimental Saab Variable Compression engine (SVC). This engine, designed by Saab Automobile, uses a technique that dynamically alters the volume of the combustion chamber (Vc), which, via the above equation, changes the compression ratio (CR).

The Atkinson cycle engine was one of the first attempts at variable compression. Since the compression ratio is the ratio between dynamic and static volumes of the combustion chamber, the Atkinson cycle's method of increasing the length of the power stroke compared to the intake stroke ultimately altered the compression ratio at different stages of the cycle.

On August 15, 2016 Nissan Motor Company announced a new variable compression engine that can choose an optimal compression ratio variably between 8:1 and 14:1. That lets the engine adjust moment by moment to torque demands, always maintaining top efficiency. Nissan says that the turbo-charged, 2-liter, four-cylinder VC-T engine averages 27 percent better fuel economy than the 3.5-liter V6 engine it replaces, with comparable power and torque.
Dynamic compression ratio

The calculated compression ratio, as given above, presumes that the cylinder is sealed at the bottom of the stroke, and that the volume compressed is the actual volume.

However: intake valve closure (sealing the cylinder) always takes place after BDC, which may cause some of the intake charge to be compressed backwards out of the cylinder by the rising piston at very low speeds; only the percentage of the stroke after intake valve closure is compressed. Intake port tuning and scavenging may allow a greater mass of charge (at a higher than atmospheric pressure) to be trapped in the cylinder than the static volume would suggest ( This "corrected" compression ratio is commonly called the "dynamic compression ratio".

This ratio is higher with more conservative (i.e., earlier, soon after BDC) intake cam timing, and lower with more radical (i.e., later, long after BDC) intake cam timing, but always lower than the static or "nominal" compression ratio.

The actual position of the piston can be determined by trigonometry, using the stroke length and the connecting rod length (measured between centers). The absolute cylinder pressure is the result of an exponent of the dynamic compression ratio. This exponent is a polytropic value for the ratio of variable heats for air and similar gases at the temperatures present. This compensates for the temperature rise caused by compression, as well as heat lost to the cylinder. Under ideal (adiabatic) conditions, the exponent would be 1.4, but a lower value, generally between 1.2 and 1.3 is used, since the amount of heat lost will vary among engines based on design, size and materials used, but provides useful results for purposes of comparison. For example, if the static compression ratio is 10:1, and the dynamic compression ratio is 7.5:1, a useful value for cylinder pressure would be (7.5)^1.3 × atmospheric pressure, or 13.7 bar. (× 14.7 psi at sea level = 201.8 psi. The pressure shown on a gauge would be the absolute pressure less atmospheric pressure, or 187.1 psi.)

The two corrections for dynamic compression ratio affect cylinder pressure in opposite directions, but not in equal strength. An engine with high static compression ratio and late intake valve closure will have a DCR similar to an engine with lower compression but earlier intake valve closure.

Additionally, the cylinder pressure developed when an engine is running will be higher than that shown in a compression test for several reasons.

    The much higher velocity of a piston when an engine is running versus cranking allows less time for pressure to bleed past the piston rings into the crankcase.
    a running engine is coating the cylinder walls with much more oil than an engine that is being cranked at low RPM, which helps the seal.
    the higher temperature of the cylinder will create higher pressures when running vs. a static test, even a test performed with the engine near operating temperature.
    A running engine does not stop taking air & fuel into the cylinder when the piston reaches BDC; The mixture that is rushing into the cylinder during the downstroke develops momentum and continues briefly after the vacuum ceases (in the same respect that rapidly opening a door will create a draft that continues after movement of the door ceases). This is called scavenging. Intake tuning, cylinder head design, valve timing and exhaust tuning determine how effectively an engine scavenges.

Compression ratio versus overall pressure ratio

Compression ratio and overall pressure ratio are interrelated as follows:
Compression ratio  2:1  3:1  5:1  10:1  15:1  20:1  25:1  35:1
Pressure ratio  2.64:1  4.66:1  9.52:1  25.12:1  44.31:1  66.29:1  90.60:1  145.11:1

The reason for this difference is that compression ratio is defined via the volume reduction:

    CR = V 1 V 2 {\displaystyle {\text{CR}}={\frac {V_{1}}{V_{2}}}} {\text{CR}}={\frac {V_{1}}{V_{2}}},

while pressure ratio is defined as the pressure increase:

    PR = P 2 P 1 {\displaystyle {\text{PR}}={\frac {P_{2}}{P_{1}}}} {\text{PR}}={\frac {P_{2}}{P_{1}}}.

In calculating the pressure ratio, we assume that an adiabatic compression is carried out (i.e. that no heat energy is supplied to the gas being compressed, and that any temperature rise is solely due to the compression). We also assume that air is a perfect gas. With these two assumptions, we can define the relationship between change of volume and change of pressure as follows:

    P 1 V 1 γ = P 2 V 2 γ ⇒ P 2 P 1 = ( V 1 V 2 ) γ {\displaystyle P_{1}V_{1}^{\gamma }=P_{2}V_{2}^{\gamma }\Rightarrow {\frac {P_{2}}{P_{1}}}=\left({\frac {V_{1}}{V_{2}}}\right)^{\gamma }} P_{1}V_{1}^{\gamma }=P_{2}V_{2}^{\gamma }\Rightarrow {\frac {P_{2}}{P_{1}}}=\left({\frac {V_{1}}{V_{2}}}\right)^{\gamma }

where γ {\displaystyle \gamma } \gamma is the ratio of specific heats (air: approximately 1.4). The values in the table above are derived using this formula. Note that in reality the ratio of specific heats changes with temperature and that significant deviations from adiabatic behavior will occur
*
So turbo engine normally lower engine compression rite?
No need to copy everythg. TLDR.

147 Pages « < 127 128 129 130 131 > » Top
Topic ClosedOptions
 

Change to:
| Lo-Fi Version
0.0329sec    0.24    6 queries    GZIP Disabled
Time is now: 8th December 2025 - 06:23 AM